تبلیغات
ریاضی - عدد گنگ


Admin Logo
themebox Logo
نویسنده :آراد صارمی
تاریخ:دوشنبه 15 اسفند 1390-11:44 ب.ظ

عدد گنگ

عدد گُنگ، یا عدد اصم، هر عدد حقیقی است که گویا نباشد، یعنی نتوان آن را به صورت کسری که صورت و مخرجش عدد صحیح باشند نوشت. مجموعه اعداد گنگ مجموعه‌ای ناشمارا است. از معروفترین این اعداد می‌توان از π، e و ۲√ نام برد.۱- شاید اولین عدد گنگی که بشر کشف کرد ۲√ بوده باشد.کشف این عدد منتسب به فیثاغورثیان(شاگردان فیثافورث) است و گفته میشود در رقابتهای علمی که در آن زمان بین گروههای مختلف درجریان بود این عدد نقش یک برگ برنده بزرگ را برای فیثاعورثیان ایفا کرد.این عدد طول قطر مربعی به ضلع یک میباشد که براحتی از رابطه ی فیثاعورث(a^2 + b^2 = c^2) بدست می آید.در ریاضیات کلاسیک هم ۲√ رایج ترین گزینه برای اثبات وجود اعداد گنگ است.در واقع ثابت میشود که عدد گویایی موجود نیست که به توان 2 برابر با 2 شود.اهمیت کشف اعداد گنگ در آنجا بود که نوعی عدم قطعیت به ریاضیات میداد بدین معنا که برخلاف ذات ریاضی یعنی قطعی بودن آن در عمل اعداد گنگ را نمیتوان بطور قطعی بیان کرد مثلا بسط اعشاری همین عدد ۲√ نامختوم و غیر تکراریست و برای نمایش آن مجبوریم به چند رقم اعشار آن اکتفا کنیم و بقیه را نادیده بگیریم مثلا بنویسیم 1.4142=۲√

2- یکی دیگر از اعداد گنگ مهم و تاریخی عدد پی( 3.1415 = ∏ ) میباشد.بازهم پای عدم قطعیت به میان می آید.شما دایره ای به قطر یک رسم میکنید اما محیط این دایره عدیدیست با بسط اعشاری بی انتها و غیر تکراری!!! عدد پی در بسیاری از معادلاتی که با نوسان و تناوب سر و کار دارند ظاهر می شود. بنا به شواهد تاریخی نخستین بار عدد پی توسط بابلیان (3.125) و مصریان(3.1604) در 1900 سال قبل از میلاد محاسبه شد که هر دو تا یک رقم اعشار صحیح است.همچنین در متون هندی این عدد 3.139 تقریب زده شده که حدودا تا دو رقم اعشار صحیح است. اولین کسی که عدد پی را با دقت قابل قبول تخمین زد ارشمیدس در قرن سه قبل از میلاد بود.او به کمک روش تقریب دایره با چند ضلعی های منتظم و به کمک 96 ضلعی منتظم عدد پی را 3.1519 تخمین زد که تا سه رقم اعشار صحیح است.همیچنی دانشمندی چینی بنام زو چانگ ژی در قرن 5 میلادی عدد پی را 3.14159292 محاسبه کرد که تا 6 رقم اعشار صحیح است.تا هزاره دوم میلادی کمتر از ده قم اعشار عدد پی بطور صحیح محاسبه شده بود(به کمک عدد پی تا 11 رقم اعشار میتوان محیط کره زمین را با دقت میلیمتر تخمین زد!!!) رفته رفته و با پیشرفت ریاضیات و ابداع روش سریهای نامتناهی تخمین های بهتر و بهتری برای عدد پی بدست آمد بطوریکه امروزه با استفاده از کامپیوترهای شخصی میتوان این عدد را تا میلیاردها رقم اعشار صحیح تخمین زد!!!

3- پرکاربردترین عدد گنگی که بشر تا بحال کشف کرده عدد نپر( 2.7182 = e) است.کشف این عدد منتسب به جان نپر(John Napier) دانشمند اسکاتلندی و معرف لگاریتم است.البته اهمیت این عدد بیشتر مرهون کارهای لئونارد اویلر(Leonhard Euler) دانشمند سوییسی است.چه بسیاری نیز معتقدند انتخاب حرف e برای عدد نپر بخاطر اولین حرف از نام خانوادگی اویلر بوده است.البته عده ای نیز میگویند این حرف نخستین حرف کلمه ی نمایی(exponential) است.در واقع توابع نمایی بصورت f(x)=a^x هستند و در بین تمام اعداد حقیقی ممکنی که میتوانند بجای a قرار گیرند عدد نپر تنها عددییست که باعث میشود تابع نمایی در نقطه صفر دقیقا شیبی برابر با یک داشته باشد(مشتق تابع e^x برابر است با e^x و لذا شیب این تابع در صفر برابر است با e^0=1) عدد نپر در جاهای دیگر هم ظاهر میشود.مثلا فرض کنید در بانک مبلغ یک دلار قرار داده اید و بانک به شما 100درصد سود در سال پرداخت میکند یعنی در پایان سال شما دو دلار خواهید داشت(n=1)حال اگر بانک بجای صد در صد در سال شش ماه اول 50 درصد سود پرداخت کند(یک و نیم دلار در پایان شش ماه)و در شش ماه دوم نیز 50 درصد سود پرداخت کند(به ازای یک و نیم دلار پس انداز شما)در پایان سال 1.5+0.75=2.25 دلار خواهید داشت(n=2)اگر این بار بانک هر سه ماه یک بار به شما 25 درصد سود پرداخت کند در پایان سال مبلغ 1.25+0.3125+0.390625+0.488281=2.44141 در حساب خود خواهید داشت (n=4) اگر این روند ادامه پیدا کند یعنی بانک در تعداد دفعات بیشتری به شما سود کمتری پرداخت کند و این تعداد دفعات یعنی n به بینهایت میل کند شما در پایان سال به اندازه 2.7182 = e دلار در بانک خواهید داشت!!! همچنین اگر احتمال برنده شدن شما در یک بازی n^ -1 باشد و شما این بازی را n بار انجام دهید و n به سمت بینهایت میل کند احتمال اینکه شما هر n بازی را ببازید برابر است باe^ -1 .گنگ




داغ کن - کلوب دات کام
نظرات() 


How do you get Achilles tendonitis?
شنبه 14 مرداد 1396 09:32 ب.ظ
I'm really enjoying the theme/design of your blog. Do
you ever run into any web browser compatibility problems?

A small number of my blog audience have complained about my
blog not working correctly in Explorer but looks great
in Safari. Do you have any solutions to help fix
this issue?
avadatta.weebly.com
شنبه 7 مرداد 1396 09:42 ب.ظ
Interesting blog! Is your theme custom made or did you download it from
somewhere? A theme like yours with a few simple tweeks would
really make my blog shine. Please let me know where
you got your design. Many thanks
std testing centers
جمعه 2 تیر 1396 07:47 ب.ظ
قلب از خود نوشتن در حالی که ظاهر شدن مناسب اصل آیا نه نشستن بسیار خوب با من پس
از برخی از زمان. جایی درون جملات شما در واقع
موفق به من مؤمن اما فقط برای کوتاه در حالی که.
من این کردم مشکل خود را با جهش در منطق و یک ممکن است را
خوب به کمک پر همه کسانی شکاف.
که شما در واقع که می توانید انجام من خواهد قطعا تا پایان تحت تاثیر قرار داد.
Ramiro
دوشنبه 25 اردیبهشت 1396 01:50 ب.ظ
Unquestionably believe that which you said. Your favorite justification appeared to
be on the net the simplest thing to take note of. I say to you, I certainly get annoyed
even as people think about issues that they plainly do not
recognize about. You managed to hit the nail upon the top and also outlined out the whole thing with no need side-effects
, folks could take a signal. Will probably be again to get more.
Thank you
 
لبخندناراحتچشمک
نیشخندبغلسوال
قلبخجالتزبان
ماچتعجبعصبانی
عینکشیطانگریه
خندهقهقههخداحافظ
سبزقهرهورا
دستگلتفکر